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ABSTRACT: At high temperatures, in anionic polymerization, depolymerization and au-
tocyclization reactions cannot be ignored and the molecular weight distribution (MWD)
results based on irreversible polymerization give erroneous results. In this article, we
have developed a semianalytical solution for the MWD of the polymer for a general
complex mechanism. We then show that the various rate constants can be directly
determined from the experimental data on MWD. After evaluating these, it is possible
to model the anionic polymerization more rationally, as we have demonstrated using
the experimental data from the literature. q 1997 John Wiley & Sons, Inc. J Appl Polym
Sci 65: 845–859, 1997

Key words: anionic polymerization; semianalytical; molecular weight distribution;
living polymerization; cyclization; unequal reactivity; series solution technique

INTRODUCTION different rate constants. For extremely low tem-
peratures (Ç 0467C), anionic polymerization has
been modeled as irreversible7 and is representedAnionic polymerization is an important class of
bypolymerization in which polymers having narrow

molecular-weight distribution (MWD) and well- Pn / M
kn

Pn/1; n Å 1, 2, rrr (1)
defined molecular structure (star, branched, block
copolymers, etc.) can be found. Normally, the initi- It is common to assume that all rate constants

are equal in value, and all results on the MWDation step is extremely fast and chain growth oc-
curs by the sequential addition of monomer to the derived in the literature assume this equal reac-

tivity hypothesis. However, if polymerization oc-growing centers. The propagation step of polymer-
ization is affected by the gegen ion and the me- curs at higher temperatures (say at about 257C),

then depolymerization and autocyclization reac-dium of the reaction mass. The experimental in-
vestigations1–10 of ‘‘living polymerizing systems’’ tions cannot be ignored and the kinetic model can

be represented by11have shown that different oligomers react with

P⁄ 1 M

P⁄c

1 P⁄

P¤ 1 M
k⁄

kc1

P‹c

kc3

Pn
c

kcn

Pn11 (2)c

k⁄π

k¤

k¤π

k‹

k‹π
P‹ 1 M . . Pn 1 M Pn11

. .

Correspondence to: A. Kumar.

q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/050845-15

845

8E93 4255/ 8E93$$4255 05-28-97 17:00:38 polaal W: Poly Applied



846 SAILAJA AND KUMAR

Muller et al. have determined the MWD versus u Å x 0 xj01 (4)
time of the poly(methyl methacrylate) formed by
anionic polymerization and confirmed that k1 , k2 , We write the MWD of the polymer and the time
and k3 are substantially different. Through re- of polymerization as an infinite series in u as fol-
peated numerical solution of the first three oligo- lows:
mers (P1 , P2 , and P3) using a simplex method,
they proposed the following model: tj Å tj01 / ∑

`

iÅ1

hiui (5a)

k1 x k2 x k3

[Pn ] Å [Pn]j01 / [M ]j01 ∑
`

iÅ1

gniui (n ¢ 1) (5b)
k3 Å k4 Å rrr Å kp (say) (3)

With this kinetic model, we numerically solved To determine hi and gni , we substitute these in
the concentrations of higher oligomers, and on the set of ODEs and evaluate them through sim-
comparison with the reported experimental data ple algebraic relations, as developed in Appendix
on MWD versus time, we found a large deviation I. This way, the solution of ODEs is reduced to
of as much as 1,000%. In view of the fact that the determining the algebraic functions of eq. (5) se-
above rate constants yield only partial MWD, we quentially. We have found that the semianalytical
wanted to reexamine this problem and in the fol- solution, eq. (5), is at least 20 times faster than
lowing evolved a more systematic technique of de- Gear’s algorithm. This is considerably easier to
termining rate constants for the experimental implement on any personal computer; it removes
MWD versus time for anionic polymerization. the stiffness of the ODEs governing the MWD and

In this article, we have determined a semiana- is extremely well suited to determine the rate con-
lytical solution for the MWD of the polymer stants, as we show below.
formed in anionic polymerization having a com-
plex kinetic model in batch reactors in the mono-

Evaluation of Rate Constantsmer conversion domain. This way, the task of the
numerical solution of ordinary differential equa- The rate constants in the complex mechanism of
tions (ODEs) (which could at times be unstable) anionic polymerization given in Table I are com-
is reduced to a sequential evaluation of algebraic puted by use of the Box Complex search tech-
functions which is shown to be inherently stable. nique. Experimental data for eight different times
We have applied these results to a set of experi- have been reported, and we define the objective
mental MWD and conversion data of polymeriza- function as the cumulative error between the sim-
tion from the literature to determine rate con- ulated and the experimental values of the various
stants directly. After determining these, we have oligomer concentrations as
proposed a simplified kinetic model which gives
an extremely good representation of anionic poly-

F Å F∑
10

iÅ1

∑
8

jÅ1

a *i (Pe
i , j 0 Pc

i , j)2G (6)merization at higher temperatures.

Above, Pe
i , j represents the experimental value ofMATHEMATICAL DEVELOPMENT

species Pi at times j . Muller et al.11 reported ex-
perimental data for 10 species (i.e., imax Å 10) forSolution of Anionic Polymerization
eight discrete times (i.e., jmax Å 8). The super-in Conversion Domain
script e refers to the experimental data, while c
denotes the computed concentration of the speciesThe equations governing the MWD of anionic po-

lymerization represented by eq. (2) are sets of Pi at the jth time. Various rate constants are var-
ied using the algorithm of the Box Complex searchODEs, summarized in Table I, which are nonlin-

ear in nature. A study of these equations reveals and are summarized in the form of a flow chart
(Fig. 2). The list of the weightage factors used forthat the MWD can be obtained only when [M ]

and [P1] to [P10] are known beforehand. In order obtaining the values of the rate constants is given
in Table II. The weightage factors are especiallyto determine a semianalytical solution of the

MWD of Table I, we divide the conversion domain high for higher oligomers to compensate for their
very low concentrations and hence improve theinto smaller steps, as shown in Figure 1, and de-

fine u in the jth step such that sensitivity of the objective function, F . The final
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Table I ODEs Governing the MWD for Kinetic Model of Eq. (2)

MWD equations
d[P1]

dt
Å 0k1[M ][P1] 0 k *1[P2] 0 2kc1[P1]2 (T1.1)

d [P2]
dt

Å k1[M ][P1] / k *2[P3] 0 k2[M ][P2] 0 k *1[P2] (T1.2)

d[Pi ]
dt

Å ki01[M ][Pi01] / k *i [Pi/1] 0 ki [M ][Pi ] 0 k *i01[Pi ] 0 kci [Pi ] . 3 ° i ° 9 (T1.3)

d [Pn ]
dt

Å kp [M ]([Pn01] 0 [Pn ]) / k *p ([Pn/1] 0 [Pn ]) 0 kc [Pn ] n ú 9 (T1.4)

Monomer consumption

d[M ]
dt

Å ∑
9

iÅ1

k *i [Pi/1] 0 ∑
9

iÅ1

ki [M ][Pi ] / k *pSl0 0 ∑
10

nÅ1

[Pn ]D 0 kp [M ]Sl0 0 ∑
9

nÅ1

[Pn ]D (T1.5)

where,

l0 Å ∑
`

nÅ1

[Pn ]

Cyclization products

d [Pc
1]

dt
Å kc1[P1]2 (T1.6)

d[Pc
n]

dt
Å kcn [Pn ] for n ¢ 3 (T1.7)

The initial conditions given by

at t Å 0, [Pi ] Å [Pi0]

[Pc
i ] Å [Pc

i0] (T1.8)

Generating function
We define a generating function, G, as follows

G Å ∑
`

nÅ1

sn[Pn ] (T1.9)

where, s is a dummy variable less than unit.
dG
dt
Å s(k *1[P2] 0 k1[M ][P1] 0 2kc1[P1]2) / s2(k1[M ][P1] / k *2[P3] 0 k2[M ][P2] 0 k *1[P2])

/ ∑
9

iÅ3

{siki01[M ][Pi01] / k *i [Pi/1] 0 ki [M ][Pi ] 0 k *i01[Pi ] 0 kci [Pi ]} / s11(k9[M ][P9])

/ (kp [M ]s2 0 kp [M ]s 0 kcs )SG 0 ∑
9

nÅ1

sn[P9]D / SG 0 ∑
10

nÅ1

sn[P9]D(k *p 0 k *ps ) (T1.10)

Above
k10 Å k11 Å rrr Å kp (T1.11)

values of rate constants give F of the order of 10020 We have used 10 species (i.e., up to P10) for our
computation. We have chosen a total of 26 rateand are found to be independent of the arbitrary

parameter a *i , which indicates that for these val- constants (equal to the number of experimental
datum points) considering propagation, depropa-ues of rate constants, the simulated results pass

through all experimental points. gation, and cyclization rate constants. The list of
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Figure 1 Division of step size for the semianalytical solution technique. conc., concen-
tration.

upper (G *i ) and lower (Hi ) bounds of the different ture for three different monomer concentrations,
as given in Table IV. They have determined therate constants is given in Table III. Table IV gives

different monomer concentrations for which stud- rate constants using the simplex method to curve
fit their experimental data. Their analysis showedies have been made, and Table V gives a list of

propagation, depropagation, and cyclization rate that the rate constants were dependent on the
chain length of the oligomers, and they assumedconstants which describe the experimental data

exactly. We observe a marked difference between that for chain length, n (¢3), the rate constants
were independent of n . However, while carryingk1 , k2 and kc3 , and kc3 is quite high as compared

with the other cyclization rate constants. This is out numerical simulation using their rate con-
stants, we found that the concentration of speciesbecause [Pc

3] is the predominant cyclization prod-
uct obtained with the progress of the reaction. [P4] , [P5] , etc., versus time was poorly repre-

sented and results often deviated by at least
1,000% from the experimental data. We proposed
a more comprehensive model having unequal re-RESULTS AND DISCUSSION
activity up to P8 involving 26 rate constants (for
26 experimental points). We have already pointedAnionic polymerization of methyl methacrylate

(MMA) at higher temperatures (say at 257C) has out that our solution is semianalytical (in the
sense that they are infinite series) in nature; asbeen shown to consist of depolymerization and au-

tocyclization steps, and the assumption of equal a result, rate constants reported by us are free of
any possible numerical instability. Because therereactivity hypothesis breaks down, as shown in

eq. (2). In this article, we have undertaken to is no explicit relation between [Pn ] versus time
and rate constants, the latter values are deter-analyze this problem in the conversion domain,

and using the semianalytical solution given in Ap- mined through repeated simulation. The varia-
tion of the set of rate constants between any twopendix I, we have determined the rate constants

of the kinetic model directly from the batch exper- simulations was achieved by use of the Box Com-
plex search technique. The total number of itera-imental data.

Muller et al.11 have carried out studies on the tions to reach F having a value of 10020 was about
33, and this F value was found to be independentanionic polymerization of MMA at high tempera-
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Figure 2 Flowchart for the Box Complex technique.

pare our results of Table V, we find a substantialof choice of a *i in eq. (6). This suggests that the
difference. The association constants can be eval-experimental values lie on the simulation of [Pn ]
uated by use of the following expression:versus t for any n , which we confirmed through

simulation for these rate constants (given in Ta-
ble V). ki Å 1

2kiass / (ki{ 0 1
2kiass ) 1 [1/(2Kiass /l0)1/2] (7)

Figure 3 gives a plot of log(Ki ) and log(ki ) ver-
sus chain length, i . In this figure, we observe a

Above, kiass , ki{ , Kiass , and l0 are, respectively, theconsiderable difference between k1 and k2 . Muller
rate constant for association for the ith oligomer,et al.11 assumed k3 Å k4 Å rrrkp , but if we com-
the rate constant for polymerization via ion pairs,
the equilibrium constant for association, and the

Table II List of Weightage Factors for the total concentration of the living oligomers. In our
Rate Constants computations, we have assumed that the equilib-

rium constant for association is independent of
i a *i chain length and is equal to 1,000 L mol01 s01.

Figure 4 shows a plot of (1/l0)1/2 versus ki . The
1 1 list of association constants and the rate constants,
2 10 ki{ , are given in Table VI. It is seen that the associ-
3 10 ation constants keep increasing beyond the fifth

i ¢ 4 100 oligomer and level off at 301.20 L mol01 s01 after
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Table V Rate Constants Obtained from the BoxTable III Upper and Lower Constraints for the
Rate Constants in the Scheme Given in Eq. (5) Complex Technique for Reversible Anionic

Polymerization of MMA
N xi G *i Hi

[P1]o Å 5 1 1002 [M ]o Å 10 1 1002

mol/L mol/L1 k1 4,000 5,000
2 k2 50 220

k1 Å 4,796.393 k3 150 200
k2 Å 180.004 k4 120 215
k3 Å 170.005 k5 120 230
k4 Å 60.006 k6 120 220
k5 Å 176.907 k7 120 220
k6 Å 181.788 k8 120 220
k7 Å 190.899 k *1 1 1 1004 5 1 1004

k8 Å 195.64
10 k *2 0.1 0.3

k *1 Å 2.29 1 1004

11 k *3 0.1 0.3
k *2 Å 0.2225

12 k *4 0.1 0.3
k *3 Å 0.28

13 k *5 0.1 0.3
k *4 Å 0.23

14 k *6 0.1 0.3
k *5 Å 0.25

15 k *7 0.1 0.3
k *6 Å 0.29

16 k *8 0.1 0.3
k *7 Å 0.1617 kc1 1 1 1004 5 1 1004

k *8 Å 0.1718 kc3 20.0 30.0
kc1 Å 1.12 1 1004

19 kc4 0.1 0.3
kc3 Å 22.1920 kc5 0.1 0.3
kc4 Å 0.2621 kc6 0.1 0.4
kc5 Å 0.2822 kc7 0.1 0.3
kc6 Å 0.3023 kc8 0.1 0.3
kc7 Å 0.2924 kp 120 220
kp Å 215.4425 k *

p 0.1 0.4
26 kc 0.1 0.4 k *p Å 0.25 kc Å 0.29

P6. [P2] has the largest rate constant for polymer-
ization via ion pairs, followed by [P5]. In all of the
above computations, we have assumed kiassl0 @ 1.

The overall result given above suggests a trend
in the rate constants, and we propose the follow-
ing simplified model:

k1 x k2 x k3 x k4

k5 Å k6

ki Å kp i ¢ 7

kci Å 0.0

Table IV List of Different Monomer
Concentrations Studied Experimentally11

[P1]o Monomer Concentration
Case No. (mol/L) (mol/L)

Figure 3 Chain length dependence of the rate equilib-
1 0.05 0.10 rium propagation and cyclization rate constants in the
2 0.10 0.20 propagation of the reversible anionic polymerization of
3 0.20 0.40 MMA.
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Table VII List of the Rate Constants
for the Proposed Model

k1 Å 4,796.38
k2 Å 150.00
k3 Å 170.00
k4 Å 60.00
k5 Å 179.30
k6 Å 179.30
ki Å kp Å 215.44 (i ú 6)
k *1 Å 0.00
k *i Å k *p Å 0.257 (i ú 2); kci Å 0.00; kci Å kc Å 0.27

i ¢ 2

seen that initiator (a-lithioisobutyrate), repre-
sented as [P1] , completely disappears in 0.02 sec.
[P2] and [P3] increase very quickly, reach a maxi-
mum, and decrease before leveling off at higherFigure 4 Plot of 1

√
l0 versus ki for the determination

conversions. The concentrations of higher oligo-of association constants.
mers keep increasing and level off at slightly
lower values. The concentrations of the cyclization
products [Pc

3] and [Pc
4] are also plotted for eachkci Å kc i ¢ 2

case. It can be seen that [Pc
3] is the only major

k *1 Å 0.0 cyclization product. This increases with conver-
sion before attaining a steady value at higher con-

k *i Å k *p i ¢ 2 versions. We have proceeded similarly for cases 2
and 3 (Table IV). It can be seen that higher initial

The values of these rate constants are given in monomer concentrations lead to fast and high con-
Table VII. We have simulated the MWD using the versions. Further, in cases 2 and 3, P3 is com-
differential equation of Table I and then compared pletely consumed, while this is not so in case 1.
this simulated result with the experimental data. The concentrations of [P4] , [P5] , and [P6] also

Figures 5 and 6 show the comparison of the
experimental results of Muller et al.11 and those
obtained by the semianalytical solution technique
for the first six oligomers for case 1 (Table IV).
Figure 6 also shows a plot of monomer conversion
versus time for case 1. Similar computations were
carried out for cases 2 and 3. Figures 7 and 8 show
the plots for the first three oligomers in cases 2
and 3, respectively. The results of our technique
have been found to match very well with the ex-
perimental results in the entire domain. It can be

Table VI List of Association Constants for the
Reversible Anionic Polymerization of MMA

i kiass (L mol01 s01) ki{ (L mol01 s01)

2 92.72 1,371.57
3 81.85 1,037.67
4 103.43 501.17

Figure 5 Comparison of simulated results with the5 95.32 1,125.66
experimental data of Muller et al.11 for the first three6 177.77 991.33
oligomers for a monomer concentration (Concn.) of 0.1(i ¢ 6) 301.20 557.89
mol/L (case 1).
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Figure 8 Comparison of simulated results with the
experimental data of Muller et al. for the first three
oligomer for a monomer concentration (Concn.) of 0.4
mol/L (case 3).Figure 6 Comparison of simulated results with the

experimental data of Muller et al.11 for [P4] , [P5] , and
[P6] for a monomer concentration (Concn) of 0.1 mol/

merization and cyclization steps. Using the re-L (case 1). soln., solution.
ported experimental data in the literature on the
MWD of the polymer formed in the batch reactors,level off at higher values with increasing initial
we have evaluated the rate constants. We haveconcentrations of the monomer.
varied the rate constants between iterations using
the Box Complex technique and minimized the

CONCLUSIONS mean square error between experimental and
simulated MWD data to determine the chainIn this article, we have developed a semianalyti-
length–dependent rate constants. At the optimalcal solution of anionic polymerization with depoly-
level, the total error F was reduced to a value of
10020 , which was formed to be independent of the
choice of weighting factors aj . This result suggests
that the simulated MWD passes through all of the
experimental datum points. On the basis of the
rate constants so determined, we have proposed
a simplified kinetic model which describes the ex-
perimental observation very well.

APPENDIX I. DERIVATION
OF COEFFICIENTS FOR ANIONIC
POLYMERIZATION OF MMA
WITH AUTOCYCLIZATION
AND DEPOLYMERIZATION

The equations governing the MWD of anionic po-
lymerization are summarized in Table I. A study
of equations in this table reveals that the MWDFigure 7 Comparison of simulated results with the
of the polymer formed can be obtained only whenexperimental data of Muller et al. for the first three
[M ] and [P1] to [P10] are known. In order to deter-oligomers for a monomer concentration (Concn.) of 0.2

mol/L (case 2). mine the hi and gni of eq. (4), we substitute these
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equations into the differential equation for the
moment generating function G as

sdG
dt

Å s2[k *1[P2] 0 k1[M ] [P1] 0 2kc1[P1]2]

/ s3[k1[M ] [P2] / k *2[P3 0 k2[M ] [P2]

0 k *1[P2]] / ∑
9

iÅ3

s i/1(ki01[M ] [Pi01]

/ k *1[Pi/1] 0 ki [M ] [Pi ] 0 k *i01[Pi ]

0 kci[Pi ] ) / s11(k9[M ] [P9] 0 k *9[P10])

/ (kp[M ]s2 0 kp[M ]s 0 kcs ) (I.1)

We now assume a series for G as follows,

G Å Gj01 / [M ]j01 ∑
`

1

giui (I.2a)

where

Gj01 Å ∑
`

1

sn[Pn ,j01] . (I.2b)

Substituting eq. (I.2) into eq. (I.1) , we get

sdG
dt

Å s2 ∑
`

iÅ0

aiu i / s3 ∑
`

iÅ0

biu i / ∑
9

nÅ3

sn/1un ,i

/ s11 ∑
`

0

diu i / (kp[M ]s2 0 kp[M ]s 0 kcs )

1 SG 0 ∑
9

nÅ1

sn[Pn ]D / (kp 0 k *ps )

1 SG 0 ∑
10

nÅ1

sn[Pn ]D (I.3)

where the coefficients ai , bi , un ,i , di are given in
Table VIII. Eq. (I.3) can be written as

sdG
dt

Å ∑
`

0

Biui (I.4c)

The coefficients Bi are given in Table IX. Now,
each of the B *i values can be written as series of
s , and these are written as

Bi Å ∑
`

jÅ1

Bijs j (I.5)
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At any time t , the amount of monomer is re-
lated to the conversion, by the following relation:
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Table IX List of Coefficients for Eq. (I.4)

i Bi

0 s2a0 / s3b0 / ∑
9

nÅ3

sn/1un,0 / s11d0 / kp[M ]0 ∑
`

1

sn/2[Pn ]0 0 (kp[M ]0 / kc ) ∑
`

1

sn/1[Pn ]0

0 kp[M ]0 ∑
9

1

sn/2[Pn ]0 / (kp[M ]0 / kc) ∑
9

1

sn/1[Pn ]0 / (k *p 0 k *ps ) SG0 0 ∑
10

nÅ1

sn[Pn ]0D
1 s2a1 / s3b1 / ∑

9

n3

sn/1un,1 / s11d1 0 kp[M ]0 ∑
`

1

sn/1[Pn ]0 / kp[M ]0 ∑
`

1

sn/1[Pn ]0 / kp[M ]2
0sg1(s 0 1)

0 kc[M ]0g1s 0 kp[M ]2
0 ∑

9

1

sn/2gn,1 / (kp[M ]0 ∑
9

1

sn/2[Pn ]0 / (kp[M ]2
0 / kc[M ]0) ∑

9

1

sn/1gn,1

0 (kp[M ]0 ∑
9

1

sn/1[Pn ]0 / [M ]0(k *p 0 k *ps ) Sg1 0 ∑
10

2

sngn,1D
i (i ¢ 2) s2ai / s3bi / ∑

9

nÅ3

sn/1un,i / s11di / (gi 0 gi01)(kp[M ]2
0s2 0 kp[M ]2

0s ) 0 kc[M ]0sgi 0 kp[M ]2
0 ∑

9

1

snÅ2

1 (gn,1 0 gn,i01) / kp[M ]2
0 ∑

9

nÅ1

sn/1(gn,i 0 g,i01) / kc[M ]0) ∑
9

nÅ1

sn/1gn,i / (k *p [M ]0 Sgi 0 ∑
10

1

sngn,iD
0 k *p [M ]0Sgis 0 ∑

10

1

sn/1gn,i01D
Note: subscript 0 stands for concentrations of species at the ( j 0 1)th step.

[M ] Å [Mj01](1 0 u ) (I.6) Now

Substituting eq. (I.6) into eq. (T1.4) of Table I, S 1

∑
`

iÅ0

Aiui
D Å ∑

`

iÅ0
yiui (I.10)we obtain the rate of change in monomer conver-

sion as follows:

wheredu
dt
Å ∑

`

iÅ0

Aiui (I.7)

where y0 Å
1
A

(I.11a)

A0 Å 0
1

[Mj01] F ∑
`

nÅ1

(k *n [Pn/1, j01] y1 Å 0
y0A1

A0
(I.11b)

yi Å 0 ∑
i01

kÅ1

yi0kAk for i ¢ 2 (I.11c)0 kn[Mj01][Pn ,j01])G
Dt Å ∑

`

hiui

iÅ1
(I.11d)A1 Å 0

1
[Mj01] F ∑

`

nÅ1

(k *n [Mj01]gn/1,1 Above,

0 kn[Mj01]([Mj01]gn ,1 0 [Pn ,j01]G hi Å
yi01

i
for i Å 1, 2, 3, rrr (I.12)

Ai Å 0
1

[Mj01] F ∑
`

nÅ1

(k *n [Mj01]gn/1,i Above, we have assumed k10 Å k11 Å rrr Å kp

The lefthand side of eq. I.1 can be written as

0 kn[Mj01](gn ,i 0 gn ,i01)G for i ¢ 2 (I.8c)
sdG
du

du
dt
Å s ∑

`

1

igiui01 ∑
`

0

Aiui (I.13a)

*
t j

tj01

dt Å *
u j

uj01
S 1

∑
`

iÅ0
Aiui

D (I.9) Å s ∑
`

0

Diui (I.13b)
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where,

D0 Å g1A0 (I.13c)

D1 Å g1A1 / 2g2A0 (I.13d)

Di Å ∑
i/1

jÅ1

jgjAi0 j for i ¢ 2 (I.13e)

Hence, eqs. (I.5) and (I.13) can be incorporated
into eq. (I.2) to get

sM0 ∑
`

0

Diui Å ∑
`

iÅ0

ui ∑
`

jÅ2

Bijs j (I.14)

In the above equation, we have not considered
Bi 1 . We have seen in Table X that Bi 1 is essen-
tially equal to zero for all values of i . Hence,
equating equal powers of u on both sides of eq.
(I.14), we get, for i Å 0

s[M ]0D0 Å ∑
`

jÅ2

B0js j (I.15a)

or

g1A0[M ]0 Å ∑
`

jÅ2

B0js j01 (I.15b)

or

g1 Å
1

A0[M ]0
∑
`

jÅ2

B0js j01 (I.15c)

or

g1 Å ∑
`

kÅ1

g1ks j (I.15d)

where,

g1k Å
B0,k/1

A0[Mj01]
j Å 1, 2, 3, rrr (I.15e)

In general, for any value of i we can write

gi Å ∑
`

jÅ1

gijs j (I.16a)

where,

gij Å
1

iA0
FBi01, j/1

[Mj01]
0 ∑

i01

kÅ1

kgk ,jAi0kG (I.16b) T
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Figure 9 Flowchart for the determination of MWD for the reversible anionic polymer-
ization of MMA.

Table XI Coefficients for the Cyclization Products [Eq. (I.20)

i a1i c1ni (n ¢ 3)

1 kc1[P1]2
0 /([M ]0A0) kcn[Pn ]0 /(A0[M ]0)

2 (1/(2A0))(2[P1]0g11kc1 0 a11A1) (1/(2A0))(kcng1n 0 c1n1A1)

i (i ¢ 3) (1/(iA0))(2[P1]0kc1gi01,1 / [M ]0kc1 ∑
i02

jÅ1

gj1gi0j01,1 (1/(iA0))(kcngi01,n 0 ∑
i01

jÅ1

jc1njAi0j )

0 ∑
i01

jÅ1

ja1jAi0j )

Note: subscript 0 stands for concentration of species at ( j 0 1)th step.
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Table XII Effect of Number of Terms on Oligomer Concentration at 70% Conversion

No. of Terms [P1] [P2] [P3] [P4] [P5] [M ] t (s)

1 0.0489 1 1007 0.0316 0.0086 0.0019 0.2196 1 1003 0.0291 0.0537
2 0.2069 1 1005 0.0317 0.0084 0.0019 0.2515 1 1003 0.0291 0.0551
3 0.5059 1 1006 0.0317 0.0083 0.0019 0.2544 1 1003 0.0291 0.0553
4 0.6404 1 1006 0.0317 0.0083 0.0019 0.2546 1 1003 0.0291 0.0553
5 0.6252 1 1006 0.0317 0.0083 0.0019 0.2546 1 1003 0.0291 0.0553

10 0.6252 1 1006 0.0317 0.0083 0.0019 0.2546 1 1003 0.0291 0.0553
RK 0.6353 1 1006 0.0314 0.0083 0.0019 0.2548 1 1003 0.0291 0.0553

Initial concentrations are [M ]0 Å 0.1; [P1]0 Å 0.05. All concentrations are in moles per liter.

Hence, expanding eq. (I.3a), we get Now, by analogy from eq. (I.1c) and eq. (I.17), we
can write

∑ sn[Pn ] Å ∑ sn[Pn ,j01]
gin Å gni (I.19)

/ [Mj01] ∑
`

jÅ1

ui ∑
`

kÅ1

gijs j (I.17)
If we assume a series solution for the products of
cyclization as

Equating equal powers of s on both sides of eq.
(I.17), we get the concentration of any species n

[Pc
1] Å [pc

1, j01] / [Mj01] ∑
`

iÅ1

a1iu i (I.20a)as

[Pc
n] Å [Pc

n ,j01] / [Mj01] ∑
`

iÅ1

c1niui
[Pn ] Å [Pn ]j01 / [M ]j01 ∑

`

iÅ1

ginui (I.18)

for i Å 3, 4, 5, rrr (I.20b)
The list of coefficients for Bij is given in Table X.

The algorithm for the coefficients of the series is
given in Figure 9. The coefficients for eq. (I.20)
are given in Table XI. After finding these coeffi-
cients, we test the convergence of these series us-
ing the Leibnitz convergence criterion. For the
nth oligomer, [Pn ]

Figure 11 Comparison of results from our computa-Figure 10 Comparison of results from our computa-
tion with those by Gear’s technique for the first three tion with those by Gear’s technique for the higher oligo-

mers. Concn, concentration; Soln., solution.oligomers. Concn, concentration; Soln, solution.
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Table XIII Variation in Step Size with Conversion

Conversion (%) ut , min u1 , min u2 , min u3 , min umin

52.8600 0.0573 0.1078 91.560 1 1002 0.1616 5.730 1 1002

61.3560 0.0753 0.0268 2.4060 1 1002 0.9312 2.680 1 1002

70.8020 0.1950 0.0617 9.5010 1 1002 0.0397 3.970 1 1002

80.0980 0.7698 0.0197 1.8570 1 1002 0.7015 1.850 1 1002

82.1810 0.7730 0.2525 4.7100 1 1003 0.7322 4.710 1 1003

83.0122 0.7772 0.1610 1.0490 1 1004 0.7416 1.049 1 1004

83.0320 0.7773 0.1577 7.0564 1 1007 0.7418 7.056 1 1007

Initial concentrations are [M]0 Å 0.1 mol/L, [P1]0 Å 0.05 mol/L.

evaluated [P2] assuming that [M ] is constant dur-
un ,min Å min

iÅ1,10
Z gn ,i

gn ,i/1
Z n Å 1, 2, 3, rrr (I.21) ing the iteration. For reversible anionic polymer-

ization, the equations governing [P2] , [P3] , . . . ,
[Pn ] are interconnected; they are solved together

ut ,min Å min
iÅ1,10

Z hi

hi/1
Z (I.22) in the time interval Dt , with results of the previ-

ous iterations as the initial guess. If [M ] is as-
sumed to be constant in this interval, the gov-

Hence, the actual step size, u , for the jth step is erning ODEs become linear where an analytical
given by solution exists.12–15 We have taken this linear es-

timate for [P2] instead of the series solution for
umin [P2] , while the concentrations of the other oligo-

mers are evaluated by the series solution, as doneÅ [min{ut ,min , u1,min , u2,min , u3,min rrr] (I.23)
earlier. The solution of this general mechanism of
anionic polymerization thus determined has beenBy using the above procedure, we reach 83.9%
found to be accurate and compares exceedinglymonomer conversion in 28 iterations. After this
well with the results of Gear’s numerical tech-conversion, the choice of umin is found to be mainly
nique.determined by the higher oligomers and reduces

This algorithm was implemented on a personalto values less than 1006 .
computers, and in Table XII, we have varied theAt higher conversions (ú80%), we have found
number of terms in the series used to computethat the step size reduces to an order of 1005 . This
the oligomer concentrations in eq. (I.5). In thisarises because umin is governed by [P2] series. To
table, we observe the effect of the increase in num-increase the speed of computations, we have pro-
ber of terms for the time series and also that of theceeded with the series solution technique and
first five oligomer concentrations at a monomerevaluated [P1] , [Pi ] , i Å 3, 4, . . . , ` , and Dt but
concentration of 0.0291 mol/L. We observe that
there is a considerable difference in results using

Table XIV Comparison of the Series Solution only one term from those obtained by using three
Technique with the Numerical Methods terms in the series. The effect of the number of

terms is more pronounced for the lower oligomersNo. of Iterations Required
than for the higher oligomers. This may be be-
cause the concentration of the higher oligomers isConversion Series
quite small. The computations were carried out(%) RKa Gear Solution
up to 10 terms in the series. However, there is no

50 5,000 179 1 difference up to nine decimal places in the results
61 6,100 266 7 computed with 5 and 10 terms. At the end of the
70 7,000 334 12 Table XII, we have also shown the results ob-
80 8,000 396 16 tained using the fourth-order Runge-Kutta
85 8,500 436 18 method with a step size of 1004 . The results are
90 9,000 495 21

comparable (as seen in Figures 10 and 11) and95 9,500 719 30
are within 1% error with all computations being

a The step size, Dt Å 1004. carried out in the double precision mode.
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